skfdiff package¶
scikit-fdiff model¶
- class skfdiff.model.Model(evolution_equations, unknowns, parameters=None, coordinates=None, boundary_conditions=None, subs=None, custom_functions=None, backend='numpy', backend_kwargs=None)[source]¶
Bases:
object
Contain finite difference approximation and routine of the dynamical system.
Take a mathematical form as input, use Sympy to transform it as a symbolic expression, perform the finite difference approximation and expose theano optimized routine for both the right hand side of the dynamical system and Jacobian matrix approximation.
- Parameters
evolution_equations (Union[Sequence[str], str]) – the right hand sides of the partial differential equations written as \(\\frac{\\partial U}{\\partial t} = F(U)\), where the spatial derivative can be written as dxxU or dx(U, 2) or with the sympy notation Derivative(U, x, x)
unknowns (Union[Sequence[str], str]) – the dependent variables with the same order as the temporal derivative of the previous arg.
parameters (Optional[Union[Sequence[str], str]]) – list of the parameters. Can be feed with a scalar of an array with the same size. They can be derivated in space as well.
boundary_conditions (Optional[Union[str, Dict[str, Dict[str, Tuple[str, str]]]]]) – Can be either “noflux” (default behavior), “periodic”, or a dictionary that follow this structure : {dependent_var: {indep_var: (left_boundary, right_boundary)}}, the boundaries being written as residual (rhs - lhs = 0). For example, an hybrid Dirichlet / Neumann flux will be written as {“U”: {“x”: (dxU - 2, U - 3)}}. If a boundary is None, a nul flux will be applied.
subs (Optional[Dict[str, str]]) – Substitution dictionnary, useful to write complex systems. The key of this dictionnary will be substitued everywhere in the evolution equations as well as in boundary conditions.
backend (str, default to "numpy") – A registered backend that will take the discretized system and expose the evolution equations routine
F
as well as an optional Jacobian routineJ
. If the later is not provided by the backend, the implicit methods will not be available. TODO: make an efficient jacobian approximation for that case, given the bandwidth. For now, there is thenumpy
backend, that provide efficient (but not optimal) computation with minimal dependencies, andnumba
backend that provide a LLVM based routine that allow faster parallel computation at the costs of a (sometime long) warm-up. The numba one is less tested and stable, but provide a potential huge speed-up for explicit methods.backend_kwargs (Optional[Dict] : supplementary arguments provided to the backend.) –
Examples
A simple diffusion equation:
>>> from skfdiff import Model >>> model = Model("k * dxxU", "U", "k")
A coupled system of convection-diffusion equation:
>>> from skfdiff import Model >>> model = Model(["k1 * dxxU - c1 * dxV", ... "k2 * dxxV - c2 * dxU",], ... ["U", "V"], ["k1", "k2", "c1", "c2"])
A 2D pure advection model, without / with upwind scheme.
>>> from skfdiff import Model >>> model = Model("c_x * dxU + c_y * dyU", "U(x, y)", ... ["c_x", "c_y"]) >>> model = Model("upwind(c_x, U, x, 2) + upwind(c_y, U, y, 2)", ... "U(x, y)", ... ["c_x", "c_y"])
A 2D diffusion model, with hybrid boundary conditions (Dirichlet, Neuman, Robin and No-flux).
>>> from skfdiff import Model >>> model = Model("dxxU + dyyU", "U(x, y)", ... boundary_conditions={("U", "x"): ("U - 3", "dxU + 5"), ... ("U", "y"): ("dyU - (U - 3)", None) ... })
- property Fields¶
Base for structured fields stored in a xarray.
scikit-fdiff simulation¶
- class skfdiff.simulation.PostProcess(name, function, description)¶
Bases:
tuple
- property description¶
Alias for field number 2
- property function¶
Alias for field number 1
- property name¶
Alias for field number 0
- class skfdiff.simulation.Simulation(model, fields, dt, t=0, tmax=None, id=None, hook=<function null_hook>, scheme='RODASPR', time_stepping=True, **kwargs)[source]¶
Bases:
object
High level container used to run simulation build on skfdiff Model. This object is an iterable which will yield every time step until the parameters ‘tmax’ is reached if provided. By default, the solver use a 6th order ROW solver, an implicit method with integrated time-stepping.
- Parameters
model (skfdiff.Model) – Contain finite difference approximation and routine of the dynamical system
fields (skfdiff.BaseFields or dict (any mappable)) – skfdiff container or mappable filled with initial conditions
dt (float) – time stepping for output. if time_stepping is False, the internal time stepping will be the same.
t (float, optional, default 0.) – initial time
tmax (float, optional, default None) – Control the end of the simulation. If None (the default), the com- putation will continue until interrupted by the user (using Ctrl-C or a SIGTERM signal).
id (None, optional) – Name of the simulation. A 2 word slug will be generated if not provided.
hook (callable, optional, default null_hook.) – Any callable taking the actual time, fields and parameters and return modified fields and parameters. Will be called every internal time step and can be used to include time dependent or conditionnal parameters, boundary conditions… The default null_hook has no impact on the computation.
scheme (callable, optional, default skfdiff.schemes.RODASPR) – An callable object which take the simulation state and return the next step. Its signature is scheme.__call__(fields, t, dt, hook) and it should return the next time and the updated fields. It take the model and extra positional and named arguments.
time_stepping (boolean, default True) – Indicate if the time step is controlled by an algorithm dependant of the temporal scheme (see the doc on time stepping for extra info).
**kwargs – extra arguments passed to the scheme.
- dt¶
output time step
- Type
float
- fields¶
skfdiff container filled with actual data
- Type
skfdiff.Fields
- i¶
actual iteration
- Type
int
- id¶
name of the simulation
- Type
str
- model¶
skfdiff Model used in the simulation
- Type
skfdiff.Model
- status¶
status of the simulation, one of the following one: (‘created’, ‘running’, ‘finished’, ‘failed’)
- Type
str
- t¶
actual time
- Type
float
- tmax¶
stopping time of the simulation. Not stopping if set to None.
- Type
float or None, default None
Examples
>>> import numpy as np >>> import skfdiff >>> model = skfdiff.Model(["k1 * dxxU", ... "k2 * dxxV"], ... ["U", "V"], ... ["k1", "k2"]) >>> x = np.linspace(0, 100, 1000, endpoint=False) >>> U = np.cos(x * 2 * np.pi / 100) >>> V = np.sin(x * 2 * np.pi / 100) >>> fields = model.Fields(x=x, U=U, V=V) >>> simulation = skfdiff.Simulation(model, fields, dt=5., tmax=50.) >>> for t, fields in simulation: ... pass >>> print(t) 50.0
- add_post_process(name, post_process, description='')[source]¶
add a post-process
- Parameters
name (str) – name of the post-traitment
post_process (callback (function of a class with a __call__ method) – or a streamz.Stream). this callback have to accept the simulation state as parameter and return the modifield simulation state. if a streamz.Stream is provided, it will me plugged_in with the previous streamz (and ultimately to the initial_stream). All these stream accept and return the simulation state.
description (str, optional, Default is "".) – give extra information about the post-processing
- attach_container(path=None, save='all', mode='w', nbuffer=None, save_interval=None, force=False, backend='netcdf')[source]¶
add a Container to the simulation which allows some persistance to the simulation.
- Parameters
path (str or None (default: None)) – path for the container. If None (the default), the data lives only in memory (and are available with simulation.container)
mode (str, optional) – “a” or “w” (default “w”)
save (str, optional) – “all” will save every time-step, “last” will only get the last time step
nbuffer (int, optional) – wait until nbuffer data in the Queue before saving on disk.
save_interval (int, optional) – wait until save_interval since last flush before saving on disk.
force (bool, optional (default False)) – if True, remove the target folder if not empty. if False, raise an error.
- compute()[source]¶
Generator which yield the actual state of the system every dt.
- Yields
tuple (t, fields) – Actual time and updated fields container.
- property container¶
give access to the attached container, if any.
- Type
skfdiff.Container
- property container_data¶
give access to the attached data in the attached container, if any.
- Type
skfdiff.Container
- property plugins_timer¶
the cpu time of the plugins (post process, data save, display…).
- Type
skfdiff.core.simulation.Timer
- property post_processes¶
list of skfdiff.core.simulation.PostProcess: contain all the post processing function attached to the simulation.
- remove_post_process(name)[source]¶
remove a post-process
- Parameters
name (str) – name of the post-process to remove.
- run(progress=True, verbose=False)[source]¶
Compute all steps of the simulation. Be careful: if tmax is not set, this function will result in an infinit loop.
- Returns
last time and result fields.
- Return type
(t, fields)
- property stream¶
Streamz starting point, fed by the simulation state after each time_step. This interface is used for post-processing, saving the data on disk by the Container and display the fields in real-time.
- Type
streamz.Stream
- property timer¶
the cpu time of the previous step and the total running time of the simulation.
- Type
skfdiff.core.simulation.Timer
- skfdiff.simulation.now(tz=None)¶
Returns new datetime object representing current time local to tz.
- tz
Timezone object.
If no tz is specified, uses local timezone.
scikit-fdiff temporal schemes¶
This module regroups all the implemented temporal schemes. They are written as callable class which take the model and some control arguments at the init, and perform a computation step every time they are called.
- The following solvers are implemented:
Backward and Forward Euler, Crank-Nicolson method (with the Theta class)
Some Rosenbrock Wanner schemes (up to the 6th order) with time controler
All the scipy.integrate.ode integrators with the scipy_ode class.
- class skfdiff.core.temporal_schemes.RODASPR(model, tol=0.1, time_stepping=True, max_iter=None, dt_min=None, safety_factor=0.9, solver='auto', recompute_target=True, iteratif_atol=0.001)[source]¶
Bases:
skfdiff.core.temporal_schemes.ROW_general
6th order Rosenbrock scheme, with time stepping
- Parameters
model (skfdiff.Model) – skfdiff Model
tol (float, optional, default 1E-2) – tolerance factor for the time stepping. The time step will adapt to ensure that the maximum relative error on all fields stay under that value.
time_stepping (bool, optional, default True) – allow a variable internal time-step to ensure good agreement between computing performance and accuracy.
max_iter (float or None, optional, default None) – maximum internal iteration allowed
dt_min (float or None, optional, default None) – minimum internal time step allowed
recompute_target (bool, optional, default False) – if True a new computation is done when the target time is exceeded, interpolation used otherwise.
- embeded_timestepping = True¶
- name = 'RODASPR'¶
- class skfdiff.core.temporal_schemes.ROS2(model)[source]¶
Bases:
skfdiff.core.temporal_schemes.ROW_general
Second order Rosenbrock scheme, without time stepping
- Parameters
model (skfdiff.Model) – skfdiff Model
- embeded_timestepping = False¶
- name = 'ROS2'¶
- class skfdiff.core.temporal_schemes.ROS3PRL(model, tol=0.1, time_stepping=True, max_iter=None, dt_min=None, safety_factor=0.9, solver='auto', recompute_target=True, iteratif_atol=0.001)[source]¶
Bases:
skfdiff.core.temporal_schemes.ROW_general
4th order Rosenbrock scheme, with time stepping
- Parameters
model (skfdiff.Model) – skfdiff Model
tol (float, optional, default 1E-2) – tolerance factor for the time stepping. The time step will adapt to ensure that the maximum relative error on all fields stay under that value.
time_stepping (bool, optional, default True) – allow a variable internal time-step to ensure good agreement between computing performance and accuracy.
max_iter (float or None, optional, default None) – maximum internal iteration allowed
dt_min (float or None, optional, default None) – minimum internal time step allowed
recompute_target (bool, optional, default False) – if True a new computation is done when the target time is exceeded, interpolation used otherwise.
- embeded_timestepping = True¶
- name = 'ROS3PRL'¶
- class skfdiff.core.temporal_schemes.ROS3PRw(model, tol=0.1, time_stepping=True, max_iter=None, dt_min=None, safety_factor=0.9, solver='auto', recompute_target=True, iteratif_atol=0.001)[source]¶
Bases:
skfdiff.core.temporal_schemes.ROW_general
Third order Rosenbrock scheme, with time stepping
- Parameters
model (skfdiff.Model) – skfdiff Model
tol (float, optional, default 1E-2) – tolerance factor for the time stepping. The time step will adapt to ensure that the maximum relative error on all fields stay under that value.
time_stepping (bool, optional, default True) – allow a variable internal time-step to ensure good agreement between computing performance and accuracy.
max_iter (float or None, optional, default None) – maximum internal iteration allowed
dt_min (float or None, optional, default None) – minimum internal time step allowed
recompute_target (bool, optional, default False) – if True a new computation is done when the target time is exceeded, interpolation used otherwise.
- embeded_timestepping = True¶
- name = 'ROS3PRw'¶
- class skfdiff.core.temporal_schemes.ROW_general(model, alpha, gamma, b, b_pred=None, time_stepping=False, tol=None, max_iter=None, dt_min=None, safety_factor=0.9, solver='auto', recompute_target=True, iteratif_atol=0.001, initial_dt=None)[source]¶
Bases:
skfdiff.core.temporal_schemes.TemporalScheme
Rosenbrock Wanner class of temporal solvers
The implementation and the different parameters can be found in http://www.digibib.tu-bs.de/?docid=00055262
- class skfdiff.core.temporal_schemes.Stationnary(model, solver=<function spsolve>)[source]¶
Bases:
object
Solve the stationnary problem F(U) = 0
- Parameters
model (skfdiff.Model) – skfdiff Model
solver (callable, optional, default scipy.sparse.linalg.spsolve) – method able to solve a Ax = b linear equation with A a sparse matrix. Take A and b as argument and return x.
- class skfdiff.core.temporal_schemes.Theta(model, theta=1, solver=<function spsolve>)[source]¶
Bases:
skfdiff.core.temporal_schemes.TemporalScheme
- Simple theta-based scheme where theta is a weight
if theta = 0, the scheme is a forward-euler scheme if theta = 1, the scheme is a backward-euler scheme if theta = 0.5, the scheme is called a Crank-Nicolson scheme
- Parameters
model (skfdiff.Model) – skfdiff Model
theta (int, optional, default 1) – weight of the theta-scheme
solver (callable, optional, default scipy.sparse.linalg.spsolve) – method able to solve a Ax = b linear equation with A a sparse matrix. Take A and b as argument and return x.
- embeded_timestepping = False¶
- name = 'theta'¶
- skfdiff.core.temporal_schemes.add_time_stepping(scheme, tol=0.01, ord=2, m=20, reject_factor=2)[source]¶
- skfdiff.core.temporal_schemes.get_temporal_scheme(name)[source]¶
get a temporal_scheme by its name
- Parameters
name (name {str} -- temporal_scheme) –
- Raises
NotImplementedError -- raised if the temporal_scheme is not available. –
- Returns
TemporalScheme – the requested temporal_scheme
- class skfdiff.core.temporal_schemes.scipy_ivp(model, use_jac=True, method='RK45', **integrator_kwargs)[source]¶
Bases:
skfdiff.core.temporal_schemes.TemporalScheme
Proxy written around the scipy.integrate.solve_ivp function. Give access to all the scipy integrators.
- Parameters
model (skfdiff.Model) – skfdiff Model
method (str, optional, default 'RK45') – name of the chosen scipy integration scheme.
**integrator_kwargs – extra arguments provided to the scipy integration scheme.
- embeded_timestepping = True¶
- name = 'scipy_ivp'¶